
Applied Binary Star Research

Binary star observations with interferometers serve a number of interests, and present a number
of challenges; amongst them are:

• Imaging. Binaries have the most simple non-trivial stellar structure; imaging speeds up
modeling process; challenges include bandwidth synthesis and orbital motion.

• Fundamental stellar parameters. Binaries allow the determination of masses, lumi-
nosities, and radii of the constituent component stars; a challenge is to achieve the
required accuracies.

• Orbital parameters. Interests include their distributions, and extremes.

• Binary star frequency and formation. Multiple-star formation is an important theo-
retical challenge as only a minority of the stars in the universe are single.

Further reading (unless noted in text):

• Hipparcos observations of binaries

– Martin, C., et al. 1997, A&AS, 122, 571

– Martin, C., & Mignard, F. 1998, A&A, 330, 585

– Martin, C., et al. 1998, A&AS, 133, 149

– Söderhjelm, S. 1999, A&A, 341, 121

• Speckle

– CHARA, McAlister, Hartkopf, Mason, et al.
”Binary star orbits from speckle interferometry. I – XII.”

– USNO, Worley, Douglass, Mason, Hartkopf, et al.

– Torres, G., et al. 1997, ApJ, 474, 256

– Scarfe, C., et al. 1994, AJ, 107, 1529

– McAlister, H. A. 1996, Sky and Telescope, 92, 5/28

• Conference proceedings

– IAU Symposium 200, “The Formation of Binary Stars”, to be published by ASP
Conference Series.

– IAU Colloquium 135, “Complementary Approaches to Double and Multiple Star
Research”, ed. by H.A. McAlister and W.I. Hartkopf, ASP Conference Series Vol
32

– NATO ASI Series C, Vol 477, “Evolutionary Processes in Binary Stars”, ed. by
R.A.M.J. Wijers, M.B. Davies, and C.A. Tout, Kluwer: Dordrecht

– IAU Symposium 189, “Fundamental Stellar Properties: The Interaction between
Observation and Theory”, ed. by T.R. Bedding A.J. Booth, and J. Davis, Kluwer:
Dordrecht



Stellar model and evolution

Johannes Andersen (2000, in ”Unsolved problems in stellar evolution”, CUP):

It is elementary textbook material that direct empirical mass determinations are
only possible for stars in binary systems (and for the Sun). What is not elementary
is how to determine individual masses and radii for stars in binary systems such
that these data may help address some of the current unsolved problems in stellar
evolution.

Fundamental stellar parameters, i.e.
the parameters which uniquely spec-
ify an evolutionary model:

• Mass

• Chemical composition

• Angular momentum

Other fundamental properties, ob-
servable and predicted by evolutionary
models:

• Luminosity

• Effective temperature

• Radius

• Surface gravity

Theoretical Hertzsprung-Russell diagram. Solid line is Zero-age-mainsequence (ZAMS). Dashed
lines are blackbody stars of constant radius, the middle line corresponding to the solar radius.
The red line is an example for an evolutionary track of a star of one solar mass.



Inventory of masses and luminosities – Optical
Interferometry of SB2’s (Mark III, NPOI, PTI)

Selected references for high precision masses (% mass/ % luminosity σ):

Armstrong J.T., et al. 1992, AJ, 104, 2217 (φ Cygni, 3.3%/12%)
Hummel, C. A., et al. 1995, AJ, 110, 376 (β Aur, 1.2%/7%)
Hummel, C. A., et al. 1998, AJ 116, 2536 (ζ 1 UMa, 2.8%/6.3%)
Hummel, C. A., et al. 1994, AJ, 107, 1859 (α Aur, 1.6–2.2%/1.5–3.3%)
Boden, A. F., et al. 1999, ApJ, 515, 356 (ι Peg, 1.1%/2.5%)
Boden, A. F., et al. 1999, ApJ, 527, 360 (64 Psc, 1.6%/9%)
Boden, A. F., et al. 2000, ApJ, 536, 880 (12 Boo, 1.5%/7%)

Comparison of Hipparcos parallaxes with orbital parallaxes [mas]

Star HIC M3/PTI/NPOI ± Hipparcos ±

θ Aql 99473 13 1 11.4 0.9
β Aur 28360 40 1 39.7 0.8
93 Leo 57565 13.8 0.5 14.4 0.9
η And 4463 13.1 0.3 13.4 0.7
β Ari 8903 53 2 54.7 0.8
β Per 14576 35.4 1.1 35.1 0.9
α Equ 104987 18.1 0.8 17.5 0.9
ζ Aur 23453 3.8 0.1 4.1 0.8
φ Cyg 96683 12.4 0.3 13.0 0.6
θ2 Tau 20894 21.2 0.8 21.9 0.8
α Aur 24608 75.1 0.5 77.3 0.9
Mizar A 65378 39.4 0.3 41.7 0.6
64 Psc 3810 43.3 0.5 41.8 0.8
ι Peg 109176 86.9 1.0 85.1 0.7
12 Boo 69226 27.1 0.4 27.3 0.8
o Leo 47508 24.2 0.1 24.1 1.0



Inventory of precise masses and luminosities – EB

The mass-luminosity relationship after Andersen, 1991, based on observations of eclipsing
binaries. On the right is a zoom-in on a section of the diagram, showing that the scatter
considerably exceeds the observational errors.

Typical properties of a well studied binary system (after Andersen 1995, IAU 166)

• Mass: 1%

• Radius: 1%

• Luminosity: 10%

• Distance: 3%

Selected references

• Andersen, J. 1991, Astron. Astrophys. Rev., 3, 91
”Absolute dimensions of eclipsing binaries. I — XXIII.”
A collaboration with Nordström, Clausen, Torres, Stefanik, Latham et al.

• Andersen, J., et al. 1989, A&A, 211, 346

• Casey, W., et al. 1998, AJ, 115, 1617

• Torres, G., et al. 2000, AJ, 119, 1942



K1,2, a′′: o Leonis

“Classical” combination of double-lined spectroscopic binary with relative astrometry between
the two stellar components. Yields orbital parallax and stellar masses, as well as luminosities
and radii if resolved with interferometry.

This example is taken from Hummel, C., et al. 2001, AJ, 121, 1623, with data from the
Mark III, NPOI, PTI, and spectroscopy with CORAVEL.

The orbital solution included the masses of the components and was obtained from a combined
fit of all available data. This type of fit uses less parameters then a combination of separate
fits of the visibilities and radial velocities, and therefore is numerically more stable. Instead
of the masses one might include K1,2 in the fit, which reduces correlation of parameters but
leaves non-linear parameter combination for the determination of the masses.

Parameter Combined solution
a/mas 4.46± 0.01
i/◦ 57.6± 0.1
Ω/◦ (J2000.0) 191.4± 0.1
T (JD−244E4) 10629.831

±0.003
e 0
P/days 14.498064

±0.000009
M1/M¯ 2.12± 0.01
M2/M¯ 1.87± 0.01
φ1/mas 1.2
φ2/mas 0.5
∆m500nm [mag] 0.70± 0.10
∆m550nm [mag] 0.91± 0.05
∆m700nm [mag] 1.05± 0.05
∆m850nm [mag] 1.16± 0.05
∆m2200nm [mag] 1.49± 0.05
γ/(km/s) 26.18± 0.05
K1/(km/s) 54.84
K2/(km/s) 62.12

Parameter Primary (F9III) Secondary (A5m)
D[pc] 41.4± 0.1

mV −MV 3.09± 0.01
(B − V ) 0.61± 0.06 0.25± 0.08
(R− I) 0.26± 0.05 0.14± 0.07
MV 0.82± 0.03 1.73± 0.05
MK −0.41± 0.03 1.08± 0.05
Teff/K 6000± 200 7600± 400
BC −0.09± 0.06 0.02± 0.05
Mbol 0.73± 0.07 1.75± 0.07
L/L¯ 39.4± 2.4 15.4± 1.0
R/R¯ 5.9± 0.5 2.2± 0.3
D [mas] 1.31± 0.23 0.49± 0.14
φUD [mas] 1.13± 0.06 0.54± 0.03



K1, a′′, π: η Pegasi

The more common case of a single-lined spectroscopic binary resolved by interferometry. The
knowledge of the parallax enables the sum of the masses be computed in solar units from the
relative astrometry, and therefore the individual masses using the one available radial velocity
curve. Future astrometric space missions following Hipparcos (FAME, SIM, GAIA) will be able
to provide parallaxes of sufficient quality for this to yield astrophysically meaningful stellar
parameters.

This example is taken from Hummel, C., et al. 1998, AJ, 116, 2536.

Parameter Mark III, NPOI, RV Hipparcos FAME (estimated)
K1/(km/s) 14.20± 0.19
a/mas 45.02± 0.06
aPC/masb 13.60± 0.88
i/◦ 68.28± 0.05 70.6± 3.1
Ω/◦ (J2000.0) 20.90± 0.04 23.6± 3.5c

T (JD−244E4) 7140.3± 0.4 7170± 9
e 0.1677± 0.0009 0.155± 0.016d

ω/◦ −5.5± 0.1 5.6± 5.5d

P/days 817.41± 0.04 818± 2.2d

π(”) 15.18± 0.56 15.18± 0.05
M1/M¯ 3.2± 0.4 3.20± 0.04
M2/M¯ 2.0± 0.2 1.98± 0.03

aSystematic error 0.1 mas, bPhoto center, cOrbit of secondary
dAdopted from spectroscopy, eAdopted from photometry



a′′1,2, π: σ Orionis

Useful for hierarchical multiple systems which provide a reference against which to measure
the absolute orbits of the individual stars in the close pair. Adding a parallax measurement
will yield masses without any need to measure the radial velocity curves.

The visibility and closure phase data shown below are from two scans taken with NPOI
using three baselines on 2000, October 18. The data are plotted versus channel number with
solid lines indicating a preliminary model for the triple system. Initial estimates for separation
and position angle of the wide pair were taken from the WDS and Hipparcos, and subsequently
adjusted. The close pair is in a very eccentric orbit with a period of some 10 days.

The image on the right
is from a simulation of a
six-station observation with
NPOI using 20 channels.
(Courtesy of Difmap [M.
Shepherd]). The slight elon-
gation of the distant com-
ponent is due to bandwidth
smearing.



K1,2, m(t), a′′: ζ Aurigae

Double-lined eclipsing binaries have been the reliable source of high-accuracy stellar masses
and radii. If an interferometric orbit is available, the distance estimate can be improved.

The example is taken from Bennett, P., et al. 1996, ApJ, 471, 454, with data from the
GHRS on HST, photometry, and the Mark III.

The orbit of ζ Aurigae is shown on the right.
The large circle outlines the size of the K super-
giant primary as measured by interferometry.
The secondary is an unresolved main-sequence
B star.
Below left, we show the visibility amplitudes
plotted versus the projected baseline length,
with the upper envelope set by the apparent
size of the primary.
Below right we show the U light curve of the
eclipse. From the photometry one can derive
the inclination angle (an independent estimate
from interferometry) and the radii of the indi-
vidual stars in units of the semi-major axis of
the orbit.



Orbital elements of a double star

The (relative) orbital motions of two compo-
nents in a binary are fully described using seven
orbital elements (if apsidal motion is negligi-
ble). These are (from W. Heintz, 1978, Double
Stars [Dordrecht: Reidel]):

• a: semi-major axis of the true orbit

• e: (numerical) eccentricity

• i: inclination, direct (towards increasing
position angle) motion for i < 90◦, ret-
rograde otherwise

• ω: periastron angle, reckoned in the di-
rection of motion

• Ω: node, ascending if radial velocity of
the component is positive

• P : period

• T : epoch of periastron passage

In the apparent ellipse of the orbit, the zero
point O is in the primary star, M is the center
of the ellipse, π the periastron, and Mπ is the
projection of the semi-major axis, so that the
eccentricity e =MO/Mπ.



Kepler’s equation

Computation of (ρ, θ) at epoch JD:

• M : mean anomaly, M=2*!pi*((JD-t) mod p)/p

• E: eccentric anomaly, M = E − e sinE (Kepler’s equation),
E=M+e*sin(M)+ê 2/2*sin(2*M)

for k=0,4 do E=E+(M-E+e*sin(E))/(1-e*cos(E))

• ν: true anomaly,
nu=2*atan(sqrt((1+e)/(1-e))*sin(E/2),cos(E/2))

• (ρ, θ):

– alpha=nu+w

– theta=atan(sin(alpha)*cos(i),cos(alpha))+n

– rho=a*(1-ê 2)/(1+e*cos(T))*sqrt(cos(alpha)̂ 2+sin(alpha)̂ 2*cos(i)̂ 2)

with n= Ω and w= ω. Text in this font is IDL code, but use different symbols for e
and E (IDL is not case sensitive).



Orbital motion

Long baseline interferometers provide the resolution to resolve many of the spectroscopic bina-
ries. It is a simple selection effect that these binaries tend to have short orbital periods which
means that orbital motion during the interferometric aperture synthesis can be significant.

Below is the example of β Aurigae (taken from Hummel, C., et al. 1995, AJ, 110, 376)
which has an orbital period of about 4 days. Data were taken with the Mark III in three filters,
and visibilities from one of the night’s data are shown. The model values are from a direct fit
of the orbital elements to the visibility data.

The orbital phase covered by the visiblity mea-
surements in this particular night is shown to
the right and exhibits a significant spread.

The fit to the blue visibilities shown to the
right is for a constant (ρ, θ) = (2.8, 281◦) and
clearly inferior to the fit including orbital mo-
tion (shown above). However, a better fit can
be achieved by adjusting the relative position to
(ρ, θ) = (3.3, 280◦), but now inconsistent with
the orbit! Only a direct fit to the visibilities
with good phase coverage will yield unbiased
orbital elements.

In order to provide a visual representation of
quantity and quality of the data, one possible
way is to plot separations and position angles
with the orbital solution. These intermediate
astrometric results have been derived account-
ing for motion by using the orbital solution.



Determinacy of the orbit

The (squared) visibility on a single baseline
measures position angles subject to a 180◦ am-
biguity (quadrant error), which can lead to
highly eccentric orbit solutions in local minima
of the goodness-of-fit surface.

In order to ascertain that the data uniquely constrain the parameters of the visual orbit one
can map out the χ2 hyper-surface in an adequately large neighborhood of the putative global
minimum. The example below is taken from Boden, A., et al. 1999, ApJ, 515, 356, who
describe work done with the PTI on ι Pegasi, an almost edge-on orbit.

The visibility data of seven (out of 11)
nights plotted versus date and time,
with the model prediction.

Shown below are the χ2/DOF fit surfaces for ι Peg data. Two surfaces are shown, on in the
subspace of orbit semimajor axis and relative component brightness, the other in the subspace
of orbital inclination and longitude of the ascending node. The insets are color contour maps
providing closeups of the minima regions.



Hybrid mapping

Here are flow diagrams of the two major imaging strategies developed for Earth-rotation aper-
ture synthesis in radio astronomy. These techniques are known as hybrid mapping since the
use of closure phases requires the self-calibration of the baselines phases with a model, which
in turn depends on the data! This model is iteratively improved through the application of the
CLEAN algorithm. Hybrid mapping converges if the source structure is sufficiently simple.

The “classic” scheme derives the new model in its entirety every major cycle through CLEAN.

(Conventional) Hybrid mapping
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The difference mapping algorithm assembles a model successively by self-calibrating the data
every time a few CLEAN iterations have been performed on the residual map of the previous
cycle. The residual map is the Fourier transform of the self-calibrated data minus the current
model. This algorithm can therefore be started off with a source model (e.g. a limb darkened
disk) to self-calibrate the phases, leaving the imaging of the surface feature to hybrid mapping.

Difference mapping
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Imaging composite spectrum binaries – 1

Considering the more important aspect of composite spectrum binaries, that is the difference
in spectral type the two components may have, we are challenged to image a structure which
depends on wavelength. Rather than imaging every channel of a multi-channel interferometer
separately, we combine the data in order to improve the synthesized beam. The algorithm
outlined below is capable of reconstructing an image by introducing the effective temperature
of a CLEAN component as an additional parameter to account for the wavelength dependence
of the stellar structure.

Here is the aperture coverage of a simulated three base-
line observation of NPOI with 32 channels. Each radial
line is composed of the 32 visibilities measured on a sin-
gle baseline at one time with the spectrometer.

The large square map to the right shows the PSF of just
two adjacent channels. Note the rather high level of the
sidelobes. Also note that the secondary (in the small
maps) is barely visible before CLEAN.

On the right we see the dirty (synthesized)
beam, DB (also called PSF in the optical, or
antenna diagram in the radio) based on data of
all channels combined. However, we keep each
DBλ separate for the following computations.
The small images to the right of theDB are the
dirty map (DM , bottom) and final map (FM ,
top). They have half the size of the DB by de-
sign. The DM changes into the residual map
(RM) after the subtraction of CLEAN compo-
nents and the application of self-cal.



Imaging composite spectrum binaries – 2

These are the results from an imaging process which doesn’t account for the different colors of
the stars we chose in this example. Note the rather high level of remaining sidelobe structure.

By introducing the effective temperature as an additional parameter, but allowing only two
different values depending on the region in the map, we can arrive at a proper solution of the
imaging problem. The CLEAN algorithm is modified such that in each iteration, instead of
subtracting the combined DB we subtract each DBλ weighted with the stellar flux in that
channel of a CLEAN component given its specific temperature, normalized by the total flux
over all areas.


